If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-156x-320=0
a = 1; b = -156; c = -320;
Δ = b2-4ac
Δ = -1562-4·1·(-320)
Δ = 25616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25616}=\sqrt{16*1601}=\sqrt{16}*\sqrt{1601}=4\sqrt{1601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-156)-4\sqrt{1601}}{2*1}=\frac{156-4\sqrt{1601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-156)+4\sqrt{1601}}{2*1}=\frac{156+4\sqrt{1601}}{2} $
| 3b+b=24-b | | X/4-1/2=1/5-x/10 | | 7x/20=7/10 | | 6a-4=16a-12 | | (x-3)(x+6)=(x-4)(x-5) | | a/5-3=1 | | 3x×x=75 | | 2(x+7)=6x9-4x | | X×14=y | | 7x-1=9-4x | | 0.12=1-p | | 4x^2-8x+5=32 | | 2(x^+1/x^)-9(x+1/x)+14=0 | | -1+x+46=18x+5 | | 3t^2+8t=60 | | 90°+x+2x+3x=180° | | 5x+13=91 | | 8y+5y=7 | | X^2(2^x)-4(2^x)=0 | | X^22^x-4(2^x)=0 | | (X^2)(2^x)-4(2^x)=0 | | 4b-8-b=10b-b | | x.3=18 | | 3^(x^2)-42=1/(3^x) | | 15x=15*3 | | 3x2+92x-7200=0 | | 6d=2/1 | | w+0.02w=9.69 | | 8+ww=12 | | -1/2+3/7y=-1/3 | | 4∣y+1∣−16=0 | | 15+9v=60 |